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Seasonal forecasts offer economic 
benefit for hydrological decision 
making in semi‑arid regions
Tanja C. Portele1,3*, Christof Lorenz1, Berhon Dibrani2, Patrick Laux1,3,4, Jan Bliefernicht3,4 & 
Harald Kunstmann1,3,4

Increasing frequencies of droughts require proactive preparedness, particularly in semi‑arid regions. 
As forecasting of such hydrometeorological extremes several months ahead allows for necessary 
climate proofing, we assess the potential economic value of the seasonal forecasting system SEAS5 
for decision making in water management. For seven drought‑prone regions analyzed in America, 
Africa, and Asia, the relative frequency of drought months significantly increased from 10 to 30% 
between 1981 and 2018. We demonstrate that seasonal forecast‑based action for droughts achieves 
potential economic savings up to 70% of those from optimal early action. For very warm months and 
droughts, savings of at least 20% occur even for forecast horizons of several months. Our in‑depth 
analysis for the Upper‑Atbara dam in Sudan reveals avoidable losses of 16 Mio US$ in one example 
year for early‑action based drought reservoir operation. These findings stress the advantage and 
necessity of considering seasonal forecasts in hydrological decision making.

Climate extremes such as droughts and anomalous wet conditions greatly affect economic wealth, particularly 
in climate sensitive semi-arid  regions1. 40% of the global land area are drylands, inhabited by more than one 
third of the global  population2 with population growth rates up to 4% per  year3. For the majority of drylands, 
especially for semi-arid regions, sustainable water management can be key with respect to the food-energy-water 
nexus. More than one third of semi-arid drylands are cultivated rain-fed or irrigated  farmland2. The importance 
of hydropower generation for states comprising semi-arid regions can be immense with up to two thirds of a 
state’s total power generated at hydroelectric  dams4. With increasing frequencies and intensities of droughts 
and hot extremes, as well as with increasing precipitation  variabilities1,5–8, conflicts of water use and impacts of 
climate change may become critical, increasing the importance of sustainable water management and climate 
proofing in semi-arid regions.

This study addresses the crucial question of whether proactive drought- and extreme event preparedness as 
well as risk mitigation in water management could be provided by the use of seasonal climate forecasts. Deci-
sion makers still hesitate to use seasonal  forecasts9,10. They claim a lack of confidence and credibility due to their 
probabilistic nature and consequent  uncertainties10,11. No explicit action plans could have been developed on the 
basis of those forecasts and the conservative decision making environment further impeded their  use10–12. The 
debate about the value of seasonal forecasts already started in the 1970s when the provision of seasonal climate 
forecasts  emerged13, and still continues, as the optimal use and value of these forecasts is still  unclear9,10,14. To 
implement and foster the usage of seasonal forecasts, the concrete economic benefits need to be demonstrated 
when decisions and actions are forecast-based. Uncertainties have to be accounted for and economically benefi-
cial probability thresholds for decisions need to be  developed15. This would allow decision makers to understand 
the potential benefits of using probabilistic seasonal forecasts.

The assessment of the potential economic value (PEV)16–18 is a direct way to achieve action recommendations 
based on forecast probabilities without having detailed operational information and interaction with a decision 
maker. It is a superordinate base for decisions that incorporates a neutral decision environment (no risk aver-
sion) with costs and losses that arise from taking forecast-based action, and a valuation of the decisions based 
on relative economic  savings16. For water management, the estimation of costs and losses associated with deci-
sions made at reservoirs and the consideration of a decision’s economic consequences should be key approaches 
for dam operations, facilitating access to the economic value approach. Most studies about the economic value 
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of forecasts only involve theoretical examples without quantification of the expected costs and losses, or used 
the economic value as a further measure to assess the goodness of the seasonal  forecasts18–22. Monetary values 
related to forecasts are only provided by few studies, and not in the direct context of the potential economic 
value  assessment23,24. Regarding the energy production at reservoirs, costs and losses of dam operations can be 
specified quite accurately for use in this approach. With energy production at dams playing a major role in many 
 countries4, a possible optimization or improvement of the dam operations by the usage of seasonal forecasts 
could provide a huge benefit, including proactive disaster planning.

The arising benefits when basing early action on hydrometeorological seasonal forecasts for extreme events 
like drought, very warm and very wet months at forecast horizons up to seven months ahead will be demonstrated 
for seven selected climate-sensitive, semi-arid, and in parts highly-managed river basins including mountain-
ous and flat areas with extents from tens of thousand to millions of square kilometers. These are the river basins 
of São Francisco with an artificially created extension (ESF) in Northeast Brazil, of Catamayo-Chira (Chira) in 
South Ecuador and North Peru, of Karun in Southwest Iran, of the Nile tributaries Tekeze-Atbara (Atbara) and 
Blue Nile in Ethiopia and Sudan, as well as of Niger and Volta in West Africa. Hit by several severe droughts and 
floods during the last  years7,25–27, all these semi-arid study regions depend on sustainable multipurpose water 
resources management. Their severe vulnerability to climate variability can be explained by a combination of 
high shares of population living in the especially dry tailwaters of the  basins28, high dependencies on irrigation 
or rain-fed agriculture and on hydroelectric power supply by large  dams4, together with a projected aggravation 
of climate change signals with higher variability of seasonal  precipitation29 and prolonged, more intense droughts 
with intermittent heavy  rainfalls6,30,31.

For the assessment of economic value, we use the latest seasonal forecast product SEAS5 by the European 
Centre for Medium-Range Weather Forecasts (ECMWF) at a resolution of 35  km32. Providing the main input 
for water management, we focus on the PEV analysis of precipitation and temperature forecasts of SEAS5. The 
evaluation method and the selection of analyzed extreme events and evaluated quantities based on commonly 
used drought indices and separate probability distributions for reference and forecast data allow for the applica-
tion of raw, uncorrected seasonal forecasts.

With this analysis, we reveal time horizons across which economic benefits exist, and evaluate differences 
between the considered regions and extreme events. For an in-depth example for the Upper Atbara Dam in 
Sudan, we calculate the incurred economic consequences of reservoir operations adapted to drought condi-
tions. For water management policies, we further suggest forecast probability thresholds for early action plans 
based on criteria for minimizing the expenses (expense minimization) and maximizing the number of hit events 
(event maximization).

Results
Increasing frequency of extreme events in semi‑arid regions. All semi-arid study basins in South 
America (Chira, Extended São Francisco), Africa (Niger, Volta, Atbara and Blue Nile) and West Asia (Karun) 
are characterized by a distinct rainy and dry season (Fig. 1). Using the reference data of ERA5 reanalyses, peak 
monthly precipitation ranges between 120 and 300 mm. Monthly temperatures are rather constant, except for 
the Karun basin with a pronounced annual cycle of about 30 ◦ C. For consistency in the following analysis, the 
rainy season is defined as the main four months of the rainy season, plus the preceding and succeeding month 
(Fig. 1).

For the occurrence of extreme events from 1981-2018, strong signals of climate change are observed across 
the study regions (Fig. 2). On average, the relative frequency of very warm T > Q80 (cold, T < Q20) months 
increases (decreases). The trend for very wet months ( P > Q80) is negative, while the frequency of six-month 
droughts indicated by the indices of standardized precipitation (SPI6) and of standardized precipitation and 
evapotranspiration (SPEI6) smaller than -1 shows a positive trend. The annual frequency range of individual 
river basins (shaded areas in Fig. 2) is largest for the drought indices, illustrating the large variability among the 
basins with respect to droughts. All trends in the basin-averaged relative frequency of extreme events shown in 
Fig. 2 are significant at a significance level of α = 0.05 (non-parametric Mann-Kendall test, see Supplementary 
Information). Some trends of individual basins may not be significant. We excluded Chira in this trend analysis 
of climate extremes in Fig. 2, as not a single trend is found to be significant (also see Supplementary Information).

The occurrence of extreme events in reanalyses is shown together with the respective probability of sea-
sonal (re-)forecasts SEAS5 from 1981–2018 in Fig. 3, for the example of drought conditions (over one month: 
SPEI1 < −1 , and over six months: SPEI6 < −1 ) during the basins’ rainy seasons. An increasing occurrence and 
accumulated SEAS5 probabilities of drought conditions can be identified in the last decade (except for Chira). 
Here, special emphasis can be placed on the 2011–2017 period of long-term drought conditions (SPEI6 < −1 for 
ERA5) in ESF, also forecast with probabilities of up to 80 and 90% (SPEI6 < −1 for SEAS5), during all included 
rainy seasons. However, lower forecast probabilities of around 40% are also present. For Niger and Volta, the 
period of 1981-2001 is mainly dominated by three drought events in 1983, 1987 and 1997; after 2001 both long-
term and short-term drought events become more frequent and are frequently forecast. For all sub-Saharan 
African basins between 2015 and 2017, an accumulation of occurred drought periods and elevated forecast 
probabilities can be identified. Long-term drought conditions (SPEI6) in the study basins, e.g. for Karun in 
1999–2001, 2007–2010 and 2018/2019, for the sub-Saharan African basins in 2009 and 2015, and for Chira from 
2002–2005, were forecast with variable probabilities ranging from 10 to 90%. A strong variability in monthly rainy 
season’s precipitation can be observed in the ESF (1990–1994, 2002–2007) and Karun (1985–1987, 1991–1999, 
2010–2016) basins with various single months with SPEI1 < −1 . For the other basins in Africa, in contrast, 
short-term and long-term drought conditions coincide to a higher degree, suggesting less variability within 
single months of the rainy season.
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Economic benefit of forecast‑based action for extreme events. The comparison of forecast prob-
abilities and drought occurrences in Fig. 3 already demonstrated the complexity of deciding whether an event 
was forecast or not, and the need to identify a probability threshold pth with which this decision is made. For the 
seven semi-arid river basins, the potential economic value PEV is shown for the extreme events of very warm 
months ( T > Q80), very wet months ( P > Q80), and for drought months (SPEI < −1 and SPI < −1 ) during the 
rainy seasons as a function of the cost-loss ratio C/L and pth in Fig. 5. Per event, two lead times, i.e., for how many 
months ahead the forecast is valid (Lead 0: current month ahead, Lead 5: six months ahead), or two aggregation 
scales (SPI1/SPEI1: one month, SPI6/SPEI6: six months), are provided. Figure 5 includes all information needed 
for the choice of a beneficial pth for each C/L considering the two criteria of expense minimization and event 
maximization. For both criteria, the range of pth with maximum PEV of each C/L is relevant; however, the event 
maximization criterion further includes the condition that the highest possible number of extreme events should 
be caught by preventative early action, i.e., a maximization of the hit rate H. Here, we suggest H > 0.5 as the 
lowest threshold for this criterion to always ensure a higher hit rate than miss rate of an event ( H > 0.5 is cross-
hatched in Figs. 5 and 4). This therewith involves a certain degree of risk aversion of the decision maker. For the 
example of a warm extreme event ( T > Q80) with Lead 0 in the Karun basin and for expense minimization, a 
user with C/L = 0.4 would identify probability thresholds between 0.45 and 0.85 as a beneficial trigger range. 
However, for event maximization, the same user ( C/L = 0.4 ) would need to use 0.15 < pth < 0.45 when only 

Figure 1.  Map of basin areas and climate diagrams with temperature and precipitation. For the seven semi-
arid river basins from West to East: Chira and Extended São Francisco (ESF) in South America, Niger and 
Volta in West Africa, Blue Nile and Atbara in Northeast Africa, and Karun in West Asia. Basin sizes range from 
O(104) km2 to O(106) km2 , with basin altitudinal differences of less than 500 m to about 4000 m. The location 
of the Upper Atbara Dam Complex is shown with a black dot on the map. The grey shaded area in the climate 
diagrams defines the main four months of the rainy season, plus the preceding and succeeding month, used for 
the analysis as “rainy season”. The red bars denote the six-month aggregation periods of a drought index for the 
analysis during the respective rainy seasons. Coastlines in the map originate from the Global Self-consistent, 
Hierarchical, High-resolution Geography Database (GSHHG)48. Basin boundaries were produced with the 
HydroSHEDS  dataset49 and modified for consistency with their respective definitions by local authorities and 
stakeholders in the study regions.
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including potential economic values with high hit rate ( H > 0.5 ). When further considering the uncertainty of 
estimation of PEV, i.e., the robustness of the choice of pth (red line in Fig. 5, where 90% of bootstrap samples 
give a PEV > 0.1 ), a beneficial range of pth for the user with C/L = 0.4 could only be provided for the expense 
minimization criteria. For the event maximization criteria, this user would be well-advised to base decisions 
on the climatological strategy. In this case for C/L = 0.4 , this would be never to act as C/L is smaller than the 
climatological frequency of the event.

For all study regions, actions based on short forecast horizons (Lead 0, SPEI1/SPI1) possess higher potential 
economic values (PEV) and larger ranges of possible user situations and beneficial probability thesholds (ranges 
of C/L and pth with PEV > 0.1 ) than actions based on the respective long-range forecasts (Lead 5 and aggregation 
periods over 6 months SPEI6/SPI6). Provided that action protocols are already established, the SEAS5 seasonal 
forecasts released on the 6th of each month can thus provide promising decision support for monthly action 
adaptations in addition to medium-range weather forecasts. Later release dates would diminish the usefulness of 
high-valued Lead-0 or SPEI1/SPI1 forecasts. The actual range of users (C/L) that can benefit from forecast-based 
action depends on the region and pth : Among the basins, Chira provides the largest ranges of possible users and 
of beneficial probability thresholds for the warm ( T >Q80) and wet ( P >Q80) extreme events of both shown 
lead times. For drought forecasts of SPEI1 and SPI1, however, the ESF and Atbara basins show the largest areas 
of PEV. For Karun, mainly forecast horizons of one month (Lead 0 and SPEI1/SPI1) can offer economic value to 
users. For all regions, basing action on temperature forecasts ( T > Q80) of Lead 0 is beneficial for a wide range 
of pth . The regions have in common that very limited PEV can be achieved by action based on Lead 5 forecasts 
of P > Q80 and for forecasts of SPI6 < −1 . Generally, the consideration of sampling uncertainty in the PEV 
estimation (red contour in Fig. 5) further reduces the ranges of users and probability thresholds with value. The 
comparison of the two drought indices SPEI6 and SPI6 for long-term drought events reveals that the inclusion 
of temperature in SPEI can increase the value of seasonal forecast-based action for most basins. Despite limited 
ranges of users and probability thresholds, PEV values above 0.4 are still possible for SPEI6 < −1 , allowing a 
longer-term decision-support for drought conditions over the rainy seasons.

Considering the maximum potential economic value PEVmax over all users (black solid line in Fig. 4), the 
event maximization criterion (cross-hatched) clearly cuts down the range of beneficial pth towards lower thresh-
olds. Here, the definition of the maximum potential economic value as the difference between hit and false 
alarm rate ( PEVmax = H − F ) further reveals that the hit rate can still be higher than the false alarm rate when 
PEVmax > 0 , however, the event maximization criterion of H > 0.5 (hit rate higher than miss rate) may no longer 
be valid. Exemplary for individual cost-loss ratios, we chose C/L = 0.36 and 0.2, that are also relevant for the real 
case study at the Upper Atbara Dam of the next section (also see Table 1). For C/L = 0.36 (blue line in Fig. 4), the 
effects of the different criteria on the choice of pth become even more pronounced: Although the maximum PEV 
for this C/L would be achieved at higher threshold probabilities (expense minimization), e.g. around pth = 0.6 
for wet extreme events of Lead 0 in Chira, or around pth = 0.4 for warm extreme events of Lead 5 in ESF, lower 
pth around 0.35 and 0.2, respectively, would be preferable in the same examples for event maximization. For other 
events and basins, like for the Lead 5 warm extreme events in Blue Nile, or for drought conditions SPEI1 < −1 
in Niger, the probability threshold with maximum PEV for the cost-loss ratio of 0.36 does not change with the 
inclusion of the event maximization criterion. For some regions and events, no beneficial pth might even be found 
under the event maximization criterion for higher cost-loss ratios like C/L = 0.36 , though showing potential 
economic value around 0.2 at higher pth . This is for example the case for Chira and P >Q80 for Lead 5, and for 
Volta and SPI1/6 < −1 . For lower cost-loss ratios, e.g. C/L = 0.2 (red line in Fig. 4), this difference in the two 
criteria is less evident, as higher PEV values occur at lower probability thresholds for the extreme events, i.e., 
beneficial forecast-based action for those users is already provided at higher forecast uncertainty.

Figure 2.  Relative frequency of climate variables from 1981–2018. From left to right the relative frequency of 
ERA5 mean temperature (T, left), total precipitation (P, middle) and drought index (SPEI, right) exceeding the 
respective quantile event thresholds (< Q20, > Q80,< −1 ) are shown for the basin-averages of Extended São 
Francisco, Niger, Volta, Atbara, Blue Nile and Karun. The thick solid lines denote the mean relative frequency 
over the 6 basins, and the shaded areas encompass the thin solid lines for the 5-year moving averages of relative 
frequencies of the individual basins.
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Further summarizing PEVmax over all probability thresholds, the effect of lead time and aggregation scale 
on the value of forecast-based action for the different extreme events can be studied (Fig. 6). For most regions, 
forecast-based action for warm extreme events ( T > Q80) is most valuable and maintains higher maximum 

Figure 3.  Forecast probability and occurrence of short- and long-term drought. The probability of SPEI1 < −1 
(1) and SPEI6 < −1 (6) for SEAS5 (S) and ERA5 (E) are provided for the rainy seasons of the seven semi-
arid regions from 1981-2018. The confinement of the analysis to the basins’ rainy seasons allows a simplified 
overview of drought events and respective forecast probabilities when droughts are mainly driven by rainfall 
shortage. The used time periods for aggregation of SPEI6 are depicted with the red bars in Fig. 1.
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potential economic value with increasing lead time than those for wet extreme events ( P > Q80). For warm 
extreme events, Lead 0 forecasts attain maximum potential economic values between 0.55 and 0.8, whereas 
for wet extreme events, PEVmax of Lead 0 forecasts ranges between 0.38 and 0.64. The uncertainty of PEVmax 
estimation is taken into account with the bootstrap confidence range (dashed lines in Fig. 6), e.g., specifying a 
range of 0.64 < PEVmax < 0.98 for warm extreme events of Lead 0 in Chira with the 10% and 90% of bootstrap 
percentiles. Except for Chira with a smooth decrease of maximum potential economic value for warm extreme 
events with lead time, all regions show an abrupt decline of PEVmax from Lead 0 to Lead 1. For most regions, 
this strong drop is larger than the decline of PEVmax from Lead 1 to Lead 5. The most abrupt drop of PEVmax is 
evident for wet extreme events in ESF from 0.75 of Lead 0 to 0.24 of Lead 1. For drought conditions, the decline 
with longer aggregation scales is less pronounced than the decline with single lead times for the wet extreme, 
as still higher-valued months of lower forecast horizon are included in SPI/SPEI. In basins like ESF, Blue Nile 

Figure 4.  Potential economic value for forecast-based action as a function of probability threshold and user 
cost-loss ratio. The filled contours denote the potential economic value PEV of SEAS5 with reference ERA5 
for extreme events of the seven river basins for rainy seasons of the hindcast period 1981-2016. The extreme 
events include T > Q80 and P > Q80 for leadmonths 0 (L0) and 5 (L5), as well as SPEI < −1 and SPI < −1 for 
aggregation scales over one (SPI1/SPEI1) and 6 months (SPI6/SPEI6). Only valuable conditions are color-coded, 
i.e., PEV > 0.1 . The uncertainty of the estimation of PEV is assessed with bootstrap resampling, with the red 
contour indicating where 90% of bootstrap samples give a PEV > 0.1 . The hatched area further represents 
where PEV > 0.1 and the hit rate H > 0.5 to base the choice of pth on the event maximization criterion.
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and Volta, where PEVmax of Lead 5 for wet extreme events is close to zero, longer aggregation scales of the dry 
extreme (SPI6 < −1 ) still attain values between 0.24 and 0.38. For SPEI the decrease of PEVmax with longer 
aggregation scales more resembles the one of the warm extreme with increasing lead time, with relatively high 
maximum potential economic values between 0.28 and 0.54 still for longer aggregation scales. The inclusion of 

Figure 5.  Maximum potential economic value as a function of probability threshold. PEVmax of SEAS5 with 
reference ERA5 is depicted for extreme events of the seven river basins for rainy seasons of the hindcast period 
1981-2016 (black line). The uncertainty of the estimation of PEVmax is assessed with the confidence range 
between the 10% and 90% quantiles of bootstrap resampling (shaded area). The red and blue lines denote the 
PEV for cost-loss ratios of 0.2 and 0.36, respectively. The extreme events include T > Q80 and P > Q80 for 
leadmonths 0 (L0) and 5 (L5), as well as SPEI < −1 and SPI < −1 for aggregation scales over one (SPI1/SPEI1) 
and 6 months (SPI6/SPEI6). The cross-hatched area further represents where the hit rate H > 0.5 to base the 
choice of pth on the event maximization criterion. Note: From its definition, PEVmax represents the PEV when 
the cost-loss ratio C/L is equal to the climatological frequency of the event (see Equations 2a, 2b), as in this 
special case both options of never or always acting create the same expense. Climatology can not advise the 
decision maker and any forecast is of maximum value. The climatological frequency of a Q80-event and SPI/
SPEI < −1 is 0.2 and 0.159, respectively. Therefore, PEV(C/L = 0.2) (red line) and PEVmax (black line) for the 
Q80-events overlap and accordingly cannot be seen separately.
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temperature attaining high values still at longer lead times in the drought index of SPEI allows for higher PEVmax 
at long aggregation scales relative to the solely precipitation based drought index of SPI.

Water level management and energy production during drought reservoir operations: the 
Upper Atbara Dam case. The calculation of the cost-loss model for drought events is demonstrated for 
the water level management and energy production at the Upper Atbara Dam in Sudan. Though having two 
dam operation examples including and neglecting sediment restrictions for a reservoir drawdown, this study 
cannot suggest completeness of all relevant processes, decisions and measures. However, it is a demonstration of 
application of the cost-loss model and the above generated results.

Having no operation restrictions on the Upper Atbara Dam, water level changes are governed only by a 
reservoir operation to maximize electrical energy generation. The standard operation at the Upper Atbara Dam 
with the peak of the rainy season in July/August is a gradual lowering of the reservoir water level from the full 
supply level (FSL) at 521 m asl by about 10 m from January on to be able to take advantage of the stored reservoir 
volume and to absorb the inflow during the rainy season (red dashed line in Fig. 7a). As the expected inflow 
comes, the reservoir is filled again to the FSL.

In a dry year, the water level curve differs in July and August when the operator first still awaits the maximum 
inflow to come, but needs to fill the reservoir until September to FSL (black dashed line in Fig. 7a). The latter 
requires a high amount of the inflow for filling as the expected peak inflow was absent. Compared to a normal 
year, this results in a strong decline by about 30% in energy production from July to September (black dashed 
line in Fig. 7b).

With prior knowledge of drought conditions during the rainy season, i.e., applying drought operations, the 
reservoir is kept at a higher water level with higher heads (black solid line in Fig. 7a), lowering the energy pro-
duction in the first phase by about 25%, but allowing for considerably higher energy production (+40%) in the 
second phase compared to the standard operations (black solid line in Fig. 7b).

If a normal year was falsely operated as a dry year, e.g., a seasonal forecast falsely predicted drought condi-
tions for the rainy season of a normal year, the reservoir with the reduced water level by only 3 m in the first 
phase is not able to absorb the normal amount of inflow (red solid line in Fig. 7a). The reservoir operates at its 
maximum capacity and part of the inflow needs to be passed through the spillway, without the usage for energy 
production (red solid line in Fig. 7b).

For the decision whether to modify the reservoir operation, i.e., to take preventive action for a coming 
drought event or not, the decision-maker needs to evaluate the economic consequences. The losses ( Ldrought ), 
when the drought occurs but no action is taken, are calculated from the yearly difference of the earned money 
applying standard operations during a normal year (Normal-Standard, 203.5 · 106US$ a−1 ) and during a dry year 
(Dry-Standard, 172.4 · 106US$ a−1 ), and amount to 31.1 · 106US$ a−1 (Table 1). The costs C = 6.0 · 106US$ a−1 
arise from the yearly difference of the earned money during a normal year with standard operations (Normal-
Standard) and a normal year that is falsely treated as a drought year (Normal-Drought, 197.5 · 106US$ a−1 ). For 
correctly-taken action, costs C and unavoidable losses Ldrought − L of in total 20.9 · 106US$ a−1 incur, determined 
from the difference of earned money in a normal year with standard operations and of a dry year with drought 
operations (Dry-Drought, 182.6 · 106US$ a−1 ). L are the potential losses protected by the action, and result in 
16.2 · 106US$ a−1 . The characteristic cost-loss ratio C/L of preventive drought operations for the Upper Atbara 
Reservoir, i.e., the cost of acting as a fraction of the potential loss prevented by the action, thus is 0.37.

With the closest resolvable C/L = 0.36 , the resulting maximum PEV of 0.4 (expense minimization) for 
drought events of SPEI1 in the Atbara basin is obtained for pth = 0.6 (Fig. 4). Considering the event maximi-
zation criterion, a lower threshold around pth = 0.32 is beneficial, however with lower PEV of 0.35. For the 
larger timescales of SPEI6, both expense minimization and event maximization criteria result in most beneficial 
forecast-based action for pth = 0.32 with PEV = 0.27.

Table 1.  Contingency table for forecast-based action. For the four action-event scenarios, the economic 
consequences are shown. For the case study of drought and standard reservoir operations at the Upper Atbara 
Dam in Sudan, the costs and losses for different outcomes of the decision model without operation restrictions 
(upper line of reservoir operations) and with sediment sluicing (lower line of reservoir operations) are 
provided. The resulting ratio of costs for action (C) and avoidable losses (L) for a drought operation without 
restrictions and with sediment sluicing are 0.37 and 0.19, respectively.

No extreme event Xcrit is not exceeded Extreme event occurs Xcrit is exceeded

Early action based on forecast pth is exceeded
False alarms (f)
Futile action (C)
Unnecessary costs for action

Hits (h)
Valuable action
(Part of) losses avoided, costs for action 
( Levent − L+ C)

Drought reservoir operation C = 6.0 · 10
6US$ a−1

C = 0.3 · 10
6US$ a−1

Ldrought − L+ C = 20.9 · 10
6US$a−1 → 

L = 16.2 · 10
6US$ a−1

Ldrought − L+ C = 16.4 · 10
6US$ a−1 → 

L = 1.6 · 10
6US$a−1

No early action pth is not exceeded
Correct rejects (r)
Valuable inaction
No costs or losses (-)

Misses (m)
Erroneous inaction
No losses avoided ( Levent)

Standard reservoir operation 0
0

Ldrought = 31.1 · 10
6US$ a−1

Ldrought = 17.7 · 10
6US$ a−1
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At high sediment-trapping dams in semi-arid regions often sediment sluicing operations during the peak of 
the rainy season are required. Here, the reduction of the reservoir water level to the minimum operation level 
(MOL) during high inflows increases the bottom shear stress maintaining incoming sediment in suspension and 
remobilizing deposited sediment with only limited or no reservoir deposition.

At the Upper Atbara Dam, the MOL at 510 m asl is usually held for six weeks during July and August and 
may be extended if inflows still exceed 3000 m3 s−1 . In general, the operation restriction by sluicing reduces the 
energy production in a normal year by about 13% due to lower heads (dark blue dashed line in Fig. 7b).

In a dry year, the same operation restriction for sluicing with a steady drawdown to MOL is performed (light 
blue dashed line in Fig. 7a). As inflows are lower, about 23% less energy is produced from July until September 
compared to a normal year (light blue dashed line in Fig. 7b).

With the application of drought operations, i.e., having prior knowledge of drought, the water level is first 
more slowly lowered, also reducing the produced energy in this phase by 14% (light blue solid line in Fig. 7). 
Then, the water level is more rapidly lowered down to the sluicing level, thus allowing for a higher energy pro-
duction (+17%) from July until September compared to standard sluicing operations due to higher heads. As 
the expected inflow is low and carries less sediments than high inflow, the period of sediment sluicing is reduced 
to four instead of six weeks.

Falsely applied drought reservoir operations in a normal year first show a lower energy production and then 
a higher energy production (dark blue solid line in Fig. 7b). The yearly difference in energy production between 
the standard (Normal-Sluicing-Standard, 177.3 · 106 US$ a−1 ) and drought reservoir operation (Normal-Sluicing-
Drought, 177.0 · 106 US$ a−1 ) only amounts to 0.17%.

Similarly to the case without reservoir operation restrictions, the costs and losses for the drought oper-
ation including sediment sluicing can be calculated (Table 1). The costs for drought operations amount to 
0.3 · 106 US$ a−1 . The total losses of a dry rainy season Ldrought are 17.7 · 106 US$ a−1 (with Dry-Sluicing-Standard: 

Figure 6.  Maximum potential economic value for forecast-based action. PEVmax of SEAS5 with reference 
ERA5 is shown for the seven river basins for rainy seasons of the hindcast period 1981-2016. Colored dots 
represent the fully evaluated PEVmax for the events of T > Q80 and P > Q80 for leadmonths 0 (L0) and 5 (L5), 
and for the events SPEI < −1 and SPI < −1 for aggregation scales over one (SPI1/SPEI1) and 6 months (SPI6/
SPEI6). The uncertainty of the estimation of PEVmax is assessed with the confidence range between the 10% and 
90% quantiles of bootstrap resampling (dashed line). PEVmax is also given for temperature and precipitation 
of leadmonths 1-4 and 6, and for drought events of scales over 3 and 4 months (black dots) with respective 
bootstrap confidence ranges.
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159.6 · 106 US$ a−1 ), of which L = 1.6 · 106 US$ a−1 can be avoided by drought reservoir operations (with Dry-
Sluicing-Drought: 160.9 · 106 US$ a−1 ). The resulting cost-loss ratio is 0.19.

With these identified costs and losses (closest resolvable C/L = 0.2 ), seasonal drought forecasts of ECWMF 
SEAS5 generate potential economic values between 40 and 55% for both short (SPEI1) and long (SPEI6) time 
horizons, and for both the event maximization and expense minimization criteria (Fig. 4). The most beneficial 
pth is therewith identified at around 30% for high hit rates above 50%.

Discussion
This study presents how decision-makers can optimize water management by the use of seasonal forecasts and 
directly obtain robust beneficial probability thresholds triggering preventive action on the chosen criterion of 
either expense minimization or event maximization. This valuation approach is a tool for user-oriented, economic 
decision-related verification of probability forecasts, away from the classical approach of evaluating forecasts 
based on skill  scores33,34, whose statistics may not be conclusive in a decision making environment. Of course, 
the classical quality assessment based on skill scores and the economic value assessment should complement each 
other. However, the aims and advantages behind both approaches are  different35: The skill/quality approach aims 

Figure 7.  Reservoir management at the Upper Atbara Dam Complex in Sudan. (a) Reservoir water 
level (shown as 5-day moving average) and (b) energy production (shown as 30-day moving average) for a 
rainy season in a normal year without operation restrictions (red lines, “Normal”), for a rainy season under 
drought conditions without restrictions (black lines, “Dry”), for a rainy season in a normal year including 
sediment sluicing (dark blue lines, “Normal-Sluicing”), and for a rainy season under drought conditions 
including sediment sluicing (light blue lines, “Dry-Sluicing”, in (a) identical to dark blue line). The dashed lines 
denote reservoir management with standard reservoir operations. The solid lines show the altered reservoir 
management for drought conditions, i.e., having prior knowledge of drought. In (b), the light gray dashed line 
marks the maximum possible energy production (7.5 GWh d−1 ), i.e., the maximum reservoir capacity. Any 
additional inflow would need to be passed through the spillway, without the usage for energy production.



11

Vol.:(0123456789)

Scientific Reports |        (2021) 11:10581  | https://doi.org/10.1038/s41598-021-89564-y

www.nature.com/scientificreports/

at the improvement of correspondence of forecasting systems with observations as well as the intercomparison 
of different forecasting systems. It has the advantage of identifying their strengths and flaws with respect to dif-
ferent quality skill measures (e.g., forecast bias, distribution, sharpness). The valuation approach has so far been 
applied for, e.g., promoting the usage of ensemble  forecasts16, verification of seasonal  forecasts20,36, and even for 
decision-support of preventive humanitarian  action18. Compared to a quality skill score analysis, the valuation 
approach as used in our study aims at building customer confidence in forecast products by demonstrating the 
economic benefit realized by decision-makers through the use of the forecasts. It has the clear advantage of 
providing decision-support for individual users with an individual choice of beneficial probability thresholds 
for a special event. A common skill score of forecast quality aggregates the forecast performance over all users 
(cost-loss ratios) and probability thresholds. For example, PEVmax = H − F , also known as the Kuipers Skill 
 score16, is the maximum economic value over all C/L and pth . In our case, skillful forecasts ( PEVmax > 0 ) for 
all lead times and scales were found for all considered extreme events (except for Blue Nile P > Q80 of Lead 5, 
Fig. 6), however, the individual cost-loss situation of an action determines the individual value and action trig-
ger. For certain users, skillful forecasts might involve non-positive economic value (Figs. 5 and 4). Considering 
the aggregation timescale of the drought index SPEI < −1 , the forecast skill PEVmax only decreases slightly with 
longer timescales (Fig. 6). However, the confident range of pth and cost-loss situations with PEV > 0.1 may 
shrink drastically from SPEI1 to SPEI6 (Fig. 5), demonstrating the necessity of a detailed look at PEV for each 
C/L and pth (Fig. 5). Therefore, skillful seasonal forecasts of hydrometeorological events per se are not necessarily 
valuable to a specific decision maker and a considered action.

In our analysis, we used uncorrected, possibly biased forecasts. This is reasonable due to the usage of relative 
thresholds, i.e., quantiles of the distributions of forecast and reference data separately, instead of absolute values, 
as well as drought indices of separate forecast and reference distributions. Other  studies37,38 merged the reference 
and forecasts data in their calculation of drought indices and therefore required the two datasets to have at least 
the same mean climate, i.e., they required linear-scaling bias correction of monthly data per lead time. With our 
separate treatment of distributions of forecast and reference data, mean and distributional biases that would be 
removed by linear scaling or quantile mapping bias correction are implicitly taken into account. Even ensemble 
calibration  methods39 won’t have an effect on the relative quantile values of separate reference and forecast dis-
tributions, as they do not change the relative location of the quantile value within the system’s distribution when 
only mean and standard deviation of the ensemble are changed. Forecast distributions are further used for each 
lead time and scale separately, diminishing the evident effect of model drift with lead time. Uncorrected raw 
forecasts can thus be used as long as (1) distributions are separately treated for reference and forecast data, (2) the 
temporal (e.g. monthly; per lead time) and spatial (basin-averages) resolutions are preserved and (3) no absolute 
values or event thresholds (e.g., > 5 mm) are used. Nevertheless, more sophisticated post-processing measures, 
such as multivariate bias  correction40 or even dynamical  downscaling41 may show an effect on the forecast value.

Regarding the transferability of the results, the catchment size was found to have only a minor impact on the 
economic value of seasonal forecasts. The results rather seem to be independent of the basin size. For differences 
in economic value between the basins, general circulation patterns and their predictability may play a larger role 
(e.g., ENSO temperature effect in Chira, influence of short predictability of westerlies in Karun). Consistently 
among all considered semi-arid basins that are far apart from each other in South America, Africa and West-Asia 
and with different dominating weather systems, higher PEV and larger beneficial ranges of probability thresholds 
and possible user situations were evident for lower forecast timescales than for higher ones (Fig. 5). The warm 
extreme events ( T > Q80) were shown to provide the respective highest values of seasonal forecasts, even for 
higher lead times (Fig. 6). Similarly, drought forecasts (SPEI) allowed for high PEV even at high aggregations 
scales (SPEI6). This consistency of a high value among all different study regions might indicate a transferability 
of the results to other regions. Economic benefits could likewise be expected from temperature and drought 
forecasts of even high forecast horizons up to six months, and from precipitation of at least one month ahead. As 
in our study regions, certain users may thus still benefit from large forecast horizons. However, further studies 
still must confirm this validity for other regions of the world.

We provided an in-depth example for water reservoir management at the Upper Atbara Dam in Sudan for 
energy production as a real-case practical application of the cost-loss decision model. For this example, dam 
operation standards are based on practical experiences of the dam management agency, however, flexibility of 
the reservoir manager is also possible when using other fix dates or even when considering energy demand and 
price. Thus, a wide range of cost-loss ratios can be obtained controlled by different underlying assumptions. 
Furthermore, the cost-loss situation was focusing on hydropower generation, not yet considering, e.g., costs and 
losses for irrigation. With this, we provided a straightforward application of the cost-loss decision model for 
forecast-based action. We further promote the implementation of seasonal ensemble forecasts for concrete water 
management operations at the Upper Atbara dam. The given example there, though including limitations and 
being demonstrated for only a specific year so far, showed that up to one half ( 16.2 · 106 US$) of the losses associ-
ated with the energy production in a drought year can be avoided if altered management operations are applied.

The increase shown in the frequency of droughts and warm extremes during the last decades together with 
high population growth rates in semi-arid regions, raise the pressure on multipurpose reservoirs, such as the 
Upper Atbara Dam. Longer-term sustainable planning several months ahead prior to the next rainy season 
becomes even more crucial. With rising demands on the water management, switching towards beneficial sea-
sonal-forecast-based early actions saves expenses and aids climate proofing. Consequently, we stress the advan-
tage and necessity of considering seasonal forecasts in hydrological decision making.
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Methods
Seasonal climate forecast and reference data. SEAS532 is the latest global seasonal forecast system of 
the European Centre for Medium-Range Weather Forecasts (ECMWF) launched in 2017 including 51 ensem-
ble members. For verification purposes, SEAS5 reforecasts are provided for the period 1981-2016 including 25 
ensemble members. Both forecasts and reforecasts are initialized on the first day of each month and provide a 
forecast horizon of 7 months. Its horizontal resolution is approximately 36 km. SEAS5 is a coupled atmosphere-
ocean-sea-ice model that is particularly powerful in the prediction of El Niño Southern Oscillation (ENSO)32.

Being aware of the uncertainty of global precipitation reference products, and further requiring intrinsic 
dependence structure and interaction between, as well as the temporal coincidence and physical consistency of 
precipitation and temperature, the climate reanalysis product  ERA542 is used as reference for both precipitation 
and temperature. Being system-consistent with SEAS5, ERA5 is offered by the ECMWF with a reanalysis period 
from 1979 to within 3 months of real time. Historical observations are combined using advanced modelling and 
data assimilation systems producing global, consistent estimates of climate variables at a horizontal resolution 
of 30 km.

For this study, monthly area-weighted basin averages of ERA5 and SEAS5 2-m mean temperature and pre-
cipitation are used. To preserve the original data and to avoid artifacts due to interpolation methods, basin 
averages were produced with masks for reference and forecast grids separately. The applied evaluation methods 
are all based on relative values, i.e., quantiles of the distribution of values per ERA5 and per SEAS5 separately. 
This approach of separate distributions of reference and forecast data implicitly performs a bias correction of 
systematic biases in mean and quantile values and therefore does not require additional prior bias correction of 
the forecast data. Also model biases of the seasonal forecasts, i.e., biases that drift over lead time, are implicitly 
taken into account by comparing only the same lead times of each month with one another. This implies differ-
ent distributions and thus quantile values for individual lead times per month making use of the long period of 
available re-forecasts.

Drought indices. The standardized precipitation index (SPI) is a drought index based only on precipitation 
 data43. The use of SPI assumes that droughts are controlled mainly by the temporal variability in precipitation, 
neglecting the variability in temperature or potential evapotranspiration (PET).

As the efficiency of drying resulting from temperature anomalies can be as high as that due to rainfall short-
age, the standardized precipitation evapotranspiration index (SPEI) also includes  PET44. Consequently, unlike 
SPI, SPEI is sensitive to global warming and also indicates drought conditions for increased evapotranspiration 
due to increased temperature despite of normal precipitation  conditions44.

Both SPI and SPEI have a multi-temporal nature and their variables of precipitation and water surplus/deficit, 
respectively, are aggregated at different time  scales43,44. Unlike in historical analyses, the application of seasonal 
forecasts suggests the calculation of the multi-month scale of SPI/SPEI in a forecast - not in a retrospective - man-
ner, i.e., SPI6 and SPEI6 of June specify the accumulation from June to November for both reference and forecast. 
For the calculation of both SPI and SPEI, probability distributions of reference and forecast data are separately 
treated, i.e., data are not merged, allowing again the use of uncorrected raw forecasts. With the relationship of 
empirical cumulative probability to the respective aggregated variable of reference and forecast data separately, 
the associated inverse normal of the respective cumulative probability is estimated. The then derived deviation for 
a standard normally distributed quantity with zero mean defines the standardized drought indices SPI and SPEI 
(also see Supplementary Information). In this study, we chose the threshold of SPI/SPEI < −1 for the drought 
analysis, representing all negative anomalies larger than one standard deviation. This encompasses the drought 
categories of moderate, severe and extreme drought and approximately 15.9% of the  data43.

Potential economic value. The benefit from including seasonal climate forecasts in the decision process 
for water management can be quantified by the potential economic value (PEV)16,17. In this decision process, 
actions taken in the water management would be based on seasonal climate forecasts.

For this, we evaluate the performance of the seasonal forecast by combining the outcomes of a binary forecast 
(hit, false alarm, miss and correct reject) with a cost-loss approach (Table 1). As seasonal forecasts are proba-
bilistic forecasts, i. e., consist of 25 (reforecasts) or 51 (forecasts since 2017) ensemble members, the definition 
of “the event is forecast” depends on a probability threshold pth . Seasonal forecast-based action will be induced 
whenever the pth of the ensemble forecast for an event is exceeded. No action is taken for lower probabilities. 
The cost-loss ratio C/L defines the ratio of the cost for action over the avoidable losses by action and is a char-
acteristic of the individual user.

PEV is a measure of relative savings. The savings arise from the comparison of the expenses for the forecast-
based action to expenses of a reference strategy, the climatological approach ( Eclimate − Eforecast ). The climato-
logical approach involves either always acting or never acting, with an optimal course defined by the relation of 
C/L and the climatological frequency of the event o : always act if C/L < o , and never act otherwise. The savings 
Eclimate − Eforecast are set into relation with the savings of having a perfect forecast available, i.e., optimal early 
action due to perfect knowledge of the future weather with which the decision maker acts only when the event 
was going to occur. This results in:

The upper boundary ( PEV = 1 ) is defined by the savings of a perfect forecast and the lower boundary ( PEV = 0 ) 
by the climatological approach. The user benefits from the forecast-based action if PEV > 0 . For PEV ≤ 0 , the 

(1)PEV =
Eclimate − Eforecast

Eclimate − Eperfect
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usage of the climatological approach is more beneficial. Depending on H and F, PEV can be calculated for dif-
ferent C/L and pth:

To estimate the uncertainty of H, F and PEV due to sampling errors of the extreme events, bootstrap resampling is 
 applied20 (also see Supplementary Information for more details on the bootstrapping algorithm). The advantage 
of the bootstrap approach is that no assumption regarding the distribution of the values is  required45. Here, at 
the equal size of the original data set, pairs of event-based forecast probability time series and binary reference 
time series are randomly selected with replacement. This resampling was repeated up to the bootstrap sample 
size of 1000. To assess the robustness of forecast  thresholds18, confidence intervals for PEV are provided based 
on the 10 % and 90 % quantiles of the bootstrap samples.

The choice of beneficial pth can be based on the expense minimization or event maximization  criteria18. For 
expense minimization, the range of pth with highest PEV for a specific user (C/L) is chosen. For event maximi-
zation, this is further put under the constraint that H should be high to catch as many events as possible and 
to avoid losses. This event maximization criterion therefore involves a certain degree of risk aversion of the 
decision maker.

Water level management and energy production at the Upper Atbara Dam. The Upper Atbara 
Dam Complex has a watershed area of about 100,000 km246. The location of the dam in the Atbara basin is shown 
in Fig. 1. The complex was built as a twin dam just upstream of the confluence of the Upper Atbara and Setit 
rivers with a power generation of up to 320 MW. The Full Supply Level (FSL) of the Upper Atbara Dam Complex 
is at 521 m asl, the Minimum Operation Level (MOL) or Sluicing Level is at 510 m asl.

A spreadsheet simulation model was applied based on the reservoir operation model that had been developed 
by the responsible dam planning company Tractebel Engineering GmbH to guide the reservoir impounding dur-
ing and after the dam construction period for the Dam Implementation Unit (DIU) in Sudan, i.e. the stakeholder 
responsible for the erection of this scheme. The model considers the necessary components of a mass balance 
and power production, such as inflow, reservoir operation rules, an elevation-volume-area curve, evaporation 
from the reservoir surface, a tailwater rating curve, hydraulic losses, efficiencies for turbines, generator and 
transformer, and own electrical energy consumption.

The main purpose of the reservoir operation rule is maximizing the energy production while not leading to 
excessive reservoir sedimentation and in turn reducing reservoir storage. Thus, the reservoir water surface is 
lowered either down to sluicing level for sediment transport and removal (case of sluicing)47, or to a reservoir 
level that is able to absorb the peak inflows of the rainy season (no sluicing). Subsequent to the sluicing or water 
surface lowering operation, reservoir filling is initiated. Energy production usually maximizes during reservoir 
filling due to high inflows towards the end of the rainy season.

Inflow data provided by the DIU in Sudan and used in the simulation model of Tractebel Engineering GmbH 
were recorded on a daily basis at gauging stations Kubur/El Sofi and Wad El Heliew at the Upper Atbara river 
and at the Setit river, respectively. Both gauging stations were located upstream of the dam with a negligible 
intermediate catchment between their locations and the twin dam. These data were also used for the construc-
tion planning of the Upper Atbara Dam. For the calculations of drought- and standard-reservoir operations, the 
daily inflow of the year 2015 was taken as an example for a dry year. For a normal year, an average inflow of the 
period 1963-2016 was chosen. The latter ensures a reservoir management designed for average conditions and 
average energy production. To convert the produced energy into US$, a price of 0.2 US$ per kWh was assumed.

Data availability
Basin-averaged seasonal forecast and reanalysis data that support the findings of this study are available under 
https:// radar. kit. edu/ radar/ en/ datas et/ XqHmF KADBY NNKqTi? token= LOkIS QJRuN CAMUM wUzjC (doi: 
https:// doi. org/ 10. 35097/ 441). Repository KITopen of the Karlsruhe Institute of Technology with DOI identifiers. 
Regarding the reservoir operations at the Upper Atbara Dam, the supporting data are available from Tractebel 
Engineering GmbH but restrictions apply to the availability of these data, which were used under license for the 
current study, and so are not publicly available. Data are however available from the authors upon reasonable 
request and with permission of Tractebel Engineering GmbH. Data of the Multivariate ENSO Index Version 2 
(MEI.v2) can be accessed via https:// www. psl. noaa. gov/ enso/ mei/.Supplementary Information 1.
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